2-Diphenylphosphino-1,3-diphospholide anions

Claude Charrier, Nicole Maigrot, François Mathey *
Laboratoire "Hétéroéléments et Coordination", URA 1499 CNRS, DCPH, École Polytechnique, 91128 Palaiseau Cedex, France

Received 26 January 1996

Abstract

The title compounds are easily obtained in four steps from 4,5-disubstituted 1,3-diphenyl-1,3-diphosphacyclopent-4-enes (1). Metallation of the $\mathrm{P}-\mathrm{CH}_{2}-\mathrm{P}$ unit of $\mathbf{1}$ followed by reaction with $\mathrm{Ph}_{2} \mathrm{PCl}$ allows a diphenylphosphino group to be grafted onto $\mathbf{1}$ at the C_{2} carbon. After removal of the remaining $\mathrm{C}_{2} \mathrm{H}$ proton by a base, selective cleavage of the two $\mathrm{P}_{1}-\mathrm{Ph}$ and $\mathrm{P}_{3}-\mathrm{Ph}$ bonds by lithium in THF affords the corresponding 2-diphenylphosphino-1,3-diphospholide ions (5). In one case, the reaction of n-butyllithium with 1a leads to an opening of the five-membered ring via a nucleophilic attack at phosphorus. A bis-(phosphino)methanide ion (8) is thus obtained. Its chemistry has been investigated briefly.

Keywords: 1,3-Diphosphacyclopent-4-ene; 1,3-Diphospholide anions; 2-Diphenylphosphino-1,3-diphospholide ions; bis-(Phosphino)methanide ion; 1,3-Diphospha-ferrocene

1. Introduction

Phosphinocyclopentadienide anions are bidentate ligands which are frequently employed to promote interactions between two different metals [1]. Additionally, an electronic analogy between cyclopentadienide and phos-pha- or polyphosphacyclopentadienides is quite obvious [2], and a wide range of η^{5}-complexes is accessible for most members of the phosphacyclopentadienide series [3]. As a consequence, the development of synthetic routes to the phosphino derivatives of phospha- and polyphosphacyclopentadienides becomes attractive. These ligands display three types of coordinating center, each having quite discrete behavior: the PR_{2} group has σ-donor properties, the cyclic P atoms have π-acceptor properties and the five-membered ring shows Cp-like

[^0]characteristics. We have previously developed access to the 2-phenylphosphinophospholide ions [4] and here present an extension of this methodology to the synthesis of 2-phenylphosphino-1,3-diphospholide ions.

2. Results and discussion

Our synthetic approach is a variation of a route which we devised for the transformation of 4,5 -disubstituted 1,3-diphenyl-1,3-diphosphacyclopent-4-enes into 1,3-diphospholide anions. This methodology involved metallation of the $\mathrm{P}-\mathrm{CH}_{2}-\mathrm{P}$ unit, which serves to strengthen the ring by a partially delocalizing electron density over the 2 -position and, subsequently, a selective lithium-induced cleavage of the two external cis or trans $\mathrm{P}-\mathrm{Ph}$ bonds to afford the desired 1,3-diphospholides [5]. In the modified scheme presented here, the first-formed $[\mathrm{P}-\mathrm{CH}-\mathrm{P}]^{-}$anions are allowed to react with diphenylchlorophosphine in order to graft the PPh_{2} substituent onto the C_{2} carbon. Remetallation then gives the substituted $\left[\mathrm{P}-\mathrm{C}\left(\mathrm{PPh}_{2}\right)-\mathrm{P}\right]^{-}$anions,
whose reaction with lithium affords the expected 2-(di-phenylphosphino)-1,3-diphospholides:

1a $\quad R^{1}=R^{2}=P h$
1b $\quad R^{1}=R^{2}=E t$
1c $\quad \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{IBu}$

4a

4c

For $1 \mathbf{1 a}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}\right.$), a careful choice of metallating agent B^{-}is important. Lithium dialkylamides ($\mathrm{R}_{2} \mathrm{NLi}$) are acceptable, but n-butyllithium may induce ring-cleavage reactions which will be discussed in more detail below. Deprotonation of pure 1a with LDA at $20^{\circ} \mathrm{C}$ gives anion 2 a as a mixture of cis and trans isomers in a $15: 85$ ratio ($\delta_{\text {sip }}=67.74$ for the cis and 97.42 for the trans isomer). After heating at $50^{\circ} \mathrm{C}$ for 1 h, this ratio evolves to $1: 1$, thus demonstrating that the cis isomer is the thermodynamic product. The composition of these mixtures was easily established by protonation, because the resulting cis and trans 1a show characteristic ${ }^{1} \mathrm{H}$ NMR patterns for the $\mathrm{P}-\mathrm{CH}_{2}-\mathrm{P}$ unit. The reaction of 2a (cis: trans $15: 85$) with $\mathrm{Ph}_{2} \mathrm{PCl}$ leads to pure trans 3a, as shown by the ABX pattern for the three different phosphorus atoms in the ${ }^{31} \mathrm{P}$ NMR spectrum. A combined analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of 3a, using the classical relationship between ${ }^{2} J_{(\mathrm{H}-\mathrm{C}-\mathrm{P})}$ and the $\mathrm{H}-\mathrm{C}-\mathrm{P}$ lone pair dihedral angle [6], demonstrates that the PPh_{2} phosphorus (X) is strongly coupled (ca. 200 Hz) to the cyclic phosphorus (A or B) when the $\mathrm{X}-\mathrm{C}-\mathrm{A}(\mathrm{B})$ lone pair dihedral angle α approaches 0°. When α is close to 120°, the ${ }^{2} J_{(\mathrm{A}(\mathrm{B})-\mathrm{X})}$ coupling is low (ca. 20 Hz). This observation was employed to establish the stereochemistry of the various isomers of $\mathbf{3 a}-\mathbf{c}$. The reaction of $\mathrm{Et}_{2} \mathrm{NLi}$ with trans $\mathbf{3 a}$ leads to the anion trans $\mathbf{4 a}$ which, upon heating, isomerizes to give cis 4a. Both anions display an $\mathrm{A}_{2} \mathrm{X}{ }^{31} \mathrm{P}$ NMR spectrum: trans $4 \mathrm{a} \delta_{\mathrm{A}}+98.8, \delta_{\mathrm{X}}-4.5,{ }^{2} J_{(\mathrm{AX})}=$ 128 Hz ; cis $4 \mathrm{a} \delta_{\mathrm{A}}+58.3, \delta_{\mathrm{x}}+12.1,{ }^{2} J_{(\mathrm{AX})}=211 \mathrm{~Hz}$. The equivalence of the two ring phosphorus atoms in
trans 4a and the formation of only one cis isomer suggest that the $C P_{3}$ carbon is planar in these anions. This hypothesis is supported by the X-ray crystal structure analysis of $\mathrm{Li}\left[\mathrm{C}\left(\mathrm{PMe}_{2}\right)_{3}\right] \cdot \mathrm{THF}$, which has a quasi-planar central carbon, \sum_{PCP} angles 350.8° [7]. Both trans and cis $\mathbf{4 a}$ react with lithium in THF to give the substituted 1,3-diphospholide 5a, which is easily identified by its characteristic $\mathrm{A}_{2} \mathrm{X}{ }^{31} \mathrm{P}$ spectrum: δ_{A} $+224.6, \delta_{\mathrm{x}}-13.1,{ }^{2} J_{(\mathrm{AX})}=133 \mathrm{~Hz}$. For additional characterization, 5 a was also converted into the corresponding 1,3-diphospha-ferrocene 6 and its $\mathrm{P}_{\mathrm{x}}-\mathrm{W}(\mathrm{CO})_{5}$ complex 7:

A first difference in the diethyl series $\left(R^{1}=R^{2}=E t\right)$ concerns the cis:trans ratio. Cis isomers dominate throughout the series. Secondly, $\mathbf{2 b}$ can be obtained by reaction of n-butyllithium with $\mathbf{1 b}$, as described for the corresponding non-functionalized diphospholide [5]. The reaction of $\mathrm{Ph}_{2} \mathrm{PCl}$ with cis-2b leads to a kinetic cis- $\mathbf{3} \mathbf{b}_{l}$ isomer whose PPh_{2} lies on the same side of the ring as the phenyl 1,3 -substituents; the ${ }^{2} J_{(\mathrm{AX})}$ coupling is low at 13 Hz . When chromatographed on silica gel, cis- $\mathbf{3} \mathbf{b}_{I}$ epimerizes to the thermodynamic isomer cis- $\mathbf{3 b}_{2}$, where the PPh_{2} and the phenyl 1,3-substituents lie on opposite sides of the ring. This epimerisation is obviously favored by some steric decompression:

In $c i s-\mathbf{3 b}_{2}$, the ${ }^{2} J_{(\mathrm{AX})}$ coupling of 200 Hz is high. In $\mathbf{4 b}$, the comparably large ${ }^{2} J_{(\mathrm{AX})}$ coupling of 210 Hz confirms the cis-disposition of the two 1,3-phenyl substituents. It should be noted that some cleavage of the ring- PPh_{2} bond was observed during the final step leading to $\mathbf{5 b}$.

In the last case ($\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}={ }^{\mathrm{t}} \mathrm{Bu}$), the interpretation of the NMR spectra is more difficult, but the overall behavior of the system resembles that for $R^{1}=$ $\mathrm{R}^{2}=\mathrm{Ph}$. The product phospholide anion 5 c shows two ${ }^{31} \mathrm{P}$ ring resonances at +188.4 and +205.7 with a ${ }^{2} J_{(\mathbf{P}-\mathbf{P})}$ coupling of only 17 Hz . As in the diethyl case, some cleavage of the ring- PPh_{2} bond in the last step leads to traces of the non-functionalized 1,3-diphospholide.

We have already noted that n-butyllithium cleaves the ring of $1 \mathbf{a}$, acting as a nucleophile rather than a base. The product is a bis-(phosphino)methanide ion:

The unexpected initial attack at phosphorus leads to the preferential cleavage of the $\mathrm{P}_{1}-\mathrm{C}_{5}$ bond. The vinyl anion which is generated by this process then deprotonates the $\mathrm{P}-\mathrm{CH}_{2}-\mathrm{P}$ unit to give the more stable delocalised bis-(phosphino)methanide 8. The existence of this anion as a 1:1 mixture of two isomers is probably the result of the chirality of the two phosphorus centers. Both isomers show huge ${ }^{2} J_{(\mathrm{P}-\mathrm{P})}$ coupling constants: 8 a $\delta_{3 l_{\mathrm{P}}}+18.1$ and $-11.4,{ }^{2} J_{(\mathrm{P}-\mathrm{P})}=405 \mathrm{~Hz} ; \mathbf{8 b} \delta_{\mathrm{sl}_{\mathrm{P}}}+17.7$ and $-11.6,{ }^{2} J_{(\mathrm{P}-\mathrm{P})}=399 \mathrm{~Hz}$. It is known from the literature [8] and from this work (see the data for the anions 4) that the ${ }^{2} J_{(\mathrm{P}-\mathrm{P})}$ couplings can reach very high absolute values in (polyphosphino)methanide ions. Even in this light, however, the data for $8 \mathbf{8 a}, \mathbf{b}$ were sufficiently extraordinary to require a check of the structure of 8 by an investigation of some of its chemical transformations.

Protonation, which occurs at carbon, gives the diphosphine 9 as a mixture of two diastereomers:

$$
\begin{equation*}
\mathrm{Ba,b} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \tag{5}
\end{equation*}
$$

The ${ }^{2} J_{(\mathrm{P}-\mathrm{P})}$ couplings (122 and 118 Hz) are within the range of literature values for such species [9]. The presence of only one $=\mathrm{CH}$ resonance in the ${ }^{13} \mathrm{C}$ spectrum $\left(\delta+139.0,{ }^{2} J_{(\mathrm{C}-\mathrm{P})}=42 \mathrm{~Hz}\right)$ confirms that the two isomers reflect the presence of two chiral phosphorus centers rather than Z / E stereoisomerism at the $\mathrm{C}=\mathrm{C}$ double bond.

It is well known that phosphinomethanide ions are ambidente nucleophiles which can react either at carbon
or at phosphorus [10]. Here, methyl iodide reacts at the phosphorus centers to give a complex mixture of five phosphorus ylids. The ${ }^{2} J_{(\mathrm{P}-\mathrm{P})}$ couplings of $130-154 \mathrm{~Hz}$ are again in line with the published data on similar species [11]. The majority of these ylids result from the attack of IMe on the more nucleophilic $\mathrm{Bu}-\mathrm{P}$ center, as shown by the subsequent chemistry given in Eq. (6):

The reaction with aldehydes offers some potential for the synthesis of unusual divinylphosphines. According to inspection of their NMR spectra, the two isomers of 11 arise from the Z / E stereoisomerism at the newly created $\mathrm{HC}=\mathrm{CH}$ double bond.

3. Experimental section

All reactions were performed under argon; the solvents were purified, dried and degassed by standard techniques. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker AC 200 SY spectrometer operating at $200.13,50.32$ and 81.01 MHz respectively. All chemical shifts are reported in parts per million downfield from internal TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and external 85% $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right.$). Mass spectra (EI) were obtained at 70 eV by the direct inlet method. Elemental analyses were performed by the "Service d'analyse du CNRS". (Note: in the following P_{A} and P_{B} refer to the phosphorus atoms in the ring and P_{X} to the chain; pt, pseudo-triplet.)

3.1. Compounds Ia and c

Compound $\mathbf{1 a}$ is obtained in 72% yield as a mixture of two cis and trans isomers ($20: 80$) by the procedure previously given for $\mathbf{1 b}$ [5]. The major (trans) isomer was isolated as a white solid, m.p. $147^{\circ} \mathrm{C}$. Anal. Found: C, 79.28; H, 5.51. $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{P}_{2}$ Calc.: C, $79.40 ; \mathrm{H}, 5.43 \%$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta+51.9$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.4$ (part AA^{\prime} of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 2 \mathrm{H}, \Sigma^{2} J_{\mathrm{HP}}=15.2 \mathrm{~Hz}, \mathrm{PC} H_{2} \mathrm{P}$). 7-7.5 (m, 20H, phenyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 23.64(\mathrm{t}$,
${ }^{1} J_{\mathrm{CP}}=19 \mathrm{~Hz}, \mathrm{PCP}$), 126.8-138.1 (m, phenyl), 149.2 (s, PC:). The cis isomer is a colorless oil. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta+27.5 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.42$ (part B of $\mathrm{ABXX}^{\prime}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}}=14 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}}=4.1 \mathrm{~Hz}$, $\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{P}$), 3.12 (part A of ABXX', $1 \mathrm{H},{ }^{2} J_{\mathrm{H}^{4} \mathrm{P}_{X}}=27$ $\left.\mathrm{Hz}, \mathrm{PC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{P}\right), 7.1-7.9\left(\mathrm{~m}, 20 \mathrm{H}\right.$, phenyl). ${ }^{13^{4} \mathrm{C}} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 22.7\left(\mathrm{t},{ }^{1} J_{\mathrm{CP}}=24.5 \mathrm{~Hz}, \mathrm{PCP}\right), 128.7-139.7$ (m, phenyl), $148.07\left(\mathrm{pt}, \Sigma^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=0 \mathrm{~Hz}, \mathrm{PC}\right.$) .

Compound 1c is obtained as a mixture of two isomers cis: trans $(55: 45)$ in a procedure slightly modified from that for $\mathbf{1 b}$ [5]. The cleavage of the 1,2 -dihydrodiphosphete is performed with two equivalents of sodium. Yield 53\%. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta+56.3$ and $+40.9\left({ }^{2} J_{\mathrm{PP}}=22 \mathrm{~Hz}\right.$, trans isomer); +37.0 and 23.8 $\left({ }^{2} J_{\mathrm{PP}}=15 \mathrm{~Hz}\right.$, cis isomer). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.96$ (d, $9 \mathrm{H},{ }^{4} J_{\mathrm{PH}}=0.9 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}$, cis isomer), $1.02(\mathrm{~s}, 9 \mathrm{H}$, ${ }^{\mathrm{t}} \mathrm{Bu}$, trans isomer), 1.97 (part A of ABXY, $1 \mathrm{H},{ }^{2} J_{\mathrm{H}_{A} \mathrm{H}_{H}}$ $=14.3 \mathrm{~Hz}, \quad{ }^{2} J_{\mathrm{H}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}}=20.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}_{\mathrm{A}} \mathrm{P}_{\mathrm{y}}}=0.8 \stackrel{(\mathrm{~Hz}}{\mathrm{H}}$, $\mathrm{PC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{P}$, trans isomer), 2.12 (part B of $\mathrm{ABXY}, 1 \mathrm{H}$, ${ }^{2} J_{H_{A} H_{B}}=13.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}}={ }^{2} J_{\mathrm{H}_{\mathrm{B}} \mathrm{P}_{\mathrm{y}}}=3.8 \mathrm{~Hz}$, $\mathrm{PCH}_{\mathrm{A}}{ }_{\mathrm{H}}^{\mathrm{B}} \mathrm{P}$, cis isomer), 2.3 (part B of $\mathrm{ABXY}, 1 \mathrm{H}$, ${ }^{2} J_{\mathrm{H}_{\mathrm{B}} \mathrm{P}_{\mathrm{Y}}}=20.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}_{\mathrm{B}} \mathrm{P}_{\mathrm{Y}}}=6.2 \mathrm{~Hz}, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{P}$, trans isomer), 2.72 (part A of ABXY, $1 \mathrm{H},{ }^{2} J_{\mathrm{H}_{A} \mathrm{P}_{X}}=26.8 \mathrm{~Hz}$, ${ }^{2} J_{\mathrm{H}_{\mathrm{A}} \mathrm{P}_{\mathrm{Y}}}=27.4 \mathrm{~Hz}, \mathrm{PC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{P}$, cis isomer), 7-7.9(m, 15 H , phenyl, cis and trans isomers). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 21.6\left(\mathrm{t},{ }^{1} J_{\mathrm{CP}_{\mathrm{x}}}={ }^{1} J_{\mathrm{CP}_{\mathrm{y}}}=22 \mathrm{~Hz}, \mathrm{PCP}\right.$, cis isomer), 24.12 (dd, ${ }^{1} J_{\mathrm{CP}_{x}}=15.2 \mathrm{~Hz},{ }^{1} J_{\mathrm{CP}_{y}}=20.3 \mathrm{~Hz}, \mathrm{PCP}$, trans isomer), 32.55 ($\mathrm{d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}$, cis or trans isomer), $32.41\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz},{ }^{1} \mathrm{Bu}\right.$, trans or cis isomer), 38.19 (pt, $\sum^{2} J_{\mathrm{CP}}+{ }^{3} J_{\mathrm{CP}}=20 \mathrm{~Hz}, C \mathrm{Me}_{3}$, cis or trans isomer), $38.56\left(\mathrm{pt}, \Sigma^{2} J_{\mathrm{CP}}+{ }^{3} J_{\mathrm{CP}}=24 \mathrm{~Hz}, C \mathrm{Me}_{3}\right.$, trans or cis isomer), 125-143 (m, phenyl, cis and trans isomers), 139.6 (pt, $\sum^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=0 \mathrm{~Hz}, C \mathrm{Ph}$, cis or trans isomer), $139.7\left(\mathrm{pt}, \sum^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=2 \mathrm{~Hz},: C \mathrm{Ph}\right.$, trans or cis isomer), 150.4 ($\mathrm{pt}, \sum^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=20 \mathrm{~Hz}$, : $C^{t} \mathrm{Bu}$, cis or trans isomer), 153.4 ($\mathrm{pt}, \sum^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=$ $22 \mathrm{~Hz},: C^{\mathrm{t}} \mathrm{Bu}$, trans or cis isomer).

3.2. Compounds 3a,b and \boldsymbol{c}

A solution of 10 mmol of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NLi}(0.7 \mathrm{M})$ in hexane/THF was added dropwise to 7 mmol of $\mathbf{1 a}$ or $\mathbf{1 c}$ in 15 ml of dry THF at $-50^{\circ} \mathrm{C}$ and the reaction mixture was subsequently warmed slowly to room temperature. 2a showed one ${ }^{31} \mathrm{P}$ resonance at +97.42 for the trans isomer and +67.74 for the cis isomer. ${ }^{31} \mathrm{P}$ NMR of 2 c showed two AB systems, one at +60.7 and +86.7 , with ${ }^{2} J_{\mathrm{PP}}=6 \mathrm{~Hz}$ for the cis isomer, and the other at +79.2 and +101.9 , with ${ }^{2} J_{\mathrm{PP}}=34 \mathrm{~Hz}$ for the trans isomer. The mixture of $2 \mathbf{a}$ or $\mathbf{2 c}$ or $\mathbf{2 b}$ [5] was added dropwise to 20 mmol of $\mathrm{Ph}_{2} \mathrm{PCl}$ (previously degassed under vacuum in order to eliminate HCl) in 5 ml of dry THF at $-80^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to room temperature and the solvents evaporated.

3a was crystallized from 200 ml of methanol as a pale yellow solid, yield 62%. Anal. Found: C, 79.34; H, 5.46. $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{P}_{3}$ Calc.: $\mathrm{C}, 79.05 ; \mathrm{H}, 5.27 \%$. Mass spectrum: $m / z 592\left(\mathrm{M}^{+}, 24 \%\right), 407\left(\mathrm{M}-\mathrm{PPh}_{2}, 100 \%\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta+63.1\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}}=20.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}}\right.$ $\left.=165.5 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),+59.4\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}}=28.4 \mathrm{~Hz}, \mathrm{P}_{\mathrm{B}}\right)$, $-18.4\left(\mathrm{dd}, \mathrm{P}_{\mathrm{X}}\right)$. ${ }^{\mathrm{i}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 3.56(\mathrm{ddd}, 1 \mathrm{H}$, $\left.{ }^{2} J_{\mathrm{HP}_{\mathrm{A}}}=5.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}_{\mathrm{B}}}=18 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}_{\mathrm{x}}}=2.5 \mathrm{~Hz}, \mathrm{CHP}\right)_{3}$, 6.9-7.6 (m, 30H, phenyl). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 34.06$ (q, ${ }^{1} J_{\mathrm{CP}}=28 \mathrm{~Hz}, C \mathrm{P}_{3}$), 126-139.5 (m, phenyl), 147.5 (pt, $\left.\sum^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=30 \mathrm{~Hz},: C \mathrm{Ph}\right), 153.1\left(\mathrm{pt}, \sum^{1} J_{\mathrm{CP}}+\right.$ $\left.{ }^{2} J_{\mathrm{CP}}=19 \mathrm{~Hz},: C \mathrm{Ph}\right)$.

3b: the residue was chromatographed on silica gel with hexane/toluene $(70: 30)$ as eluant, to give $\mathbf{3 b}$ in the form of a pale yellow oil as a mixture of two cis isomers. Yield 75\%. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta+36.5$ (d, ${ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}}=13.5 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}$), $-22.1\left(\mathrm{t}, \mathrm{P}_{\mathrm{X}}\right)$ for $\mathbf{3 b} \mathrm{b}_{l}$ (kinetic isomer) $; \delta+29.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}}=200 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),-9.5(\mathrm{pt}$, P_{X}) for $\mathbf{3} \mathbf{b}_{2}$ (thermodynamic isomer). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 0.96\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02(\mathrm{t}$, $\left.6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{C} H_{3}\right), 1.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{C} \mathrm{H}_{2}\right), 3.06\left(\mathrm{dt}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HP}_{\mathrm{A}}}=3.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}_{\mathrm{X}}}=1.5\right.$ $\left.\mathrm{Hz}, \mathrm{CHP}_{3}, \mathbf{3 b}_{2}\right), 3.95\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HP}_{A}}=22.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}_{\mathrm{X}}}=0\right.$ $\left.\mathrm{Hz}, \mathrm{CHP}_{3}, \mathbf{3} \mathbf{b}_{1}\right), 6.9-7.4\left(\mathrm{~m}, 2 \times 20 \mathrm{H}\right.$, phenyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 15.43\left(\mathrm{~d}, \sum^{3} J_{\mathrm{CP}}+{ }^{4} J_{\mathrm{CP}}=7.1 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right), 16.0\left(\mathrm{pt}, \sum^{3} J_{\mathrm{CP}}+{ }^{4} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 24.33(\mathrm{pt}$, $\left.\sum^{2} J_{\mathrm{CP}}+{ }^{3} J_{\mathrm{CP}}=0 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 24.42\left(\mathrm{pt}, \Sigma^{2} J_{\mathrm{CP}}+{ }^{3} J_{\mathrm{CP}}=0\right.$ $\mathrm{Hz}, \mathrm{CH}_{2}$), 38.1-39.1 ($\mathrm{m}, \mathrm{CHP}_{3}$, both isomers), 126140 (m, phenyl), 149.64 (pt, $\sum^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=11 \mathrm{~Hz}$, $: C-E t), 150.7\left(\mathrm{pt}, \sum^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=10 \mathrm{~Hz},: C-\mathrm{Et}\right)$.

3c: the residue was chromatographed on silica gel with hexane/toluene (rising gradient from $70: 30$ to $60: 40$). 3c, a pale yellow oil, was obtained as a $1: 1: 1$ mixture of three isomers in 56% yield.

The trans isomer was crystallized from 50 ml of methanol, m.p. $147^{\circ} \mathrm{C}$. Anal. Found: C, 77.17 ; H, 6.38 . $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{P}_{3}$ Calc.: $\mathrm{C}, 77.60 ; \mathrm{H}, 6.16 \%$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta+58.2\left(\mathrm{dd}_{2}{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}}=18.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}}=181.4\right.$ $\left.\mathrm{Hz}, \mathrm{P}_{\mathrm{A}}\right),+66.9\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}}=18 \mathrm{~Hz}, \mathrm{P}_{\mathrm{B}}\right),-16.4(\mathrm{dd}$, P_{x}). ${ }^{\mathrm{t}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.06\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 3.40(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{-} J_{\mathrm{HP}}=18 \mathrm{~Hz}, \mathrm{C} H \mathrm{P}_{3}\right), 6.9-7.6(\mathrm{~m}, 25 \mathrm{H}$, phenyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 32.43\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.3 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, 32.64-33.27 (m, $\left.C P_{3}\right), 38.42\left(\mathrm{pt}, \sum^{2} J_{\mathrm{CP}}+{ }^{3} J_{\mathrm{CP}}=21\right.$ $\mathrm{Hz}, C \mathrm{Me}_{3}$), 125-141 (m, phenyl), 149.73 (pt, $\Sigma^{1} J_{\mathrm{CP}}+$ $\left.{ }^{2} J_{\mathrm{CP}}=24 \mathrm{~Hz},: C-\mathrm{Ph}\right), 160.10\left(\mathrm{ddd},{ }^{1} J_{\mathrm{CP}}=22 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}\right.$ and ${ }^{3} J_{\mathrm{CP}}=9 \mathrm{~Hz}$ and $4 \mathrm{~Hz},: C-{ }^{\mathrm{t}} \mathrm{Bu}$).

Both cis isomers are only characterized in ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta+39.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}}=18.2 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),+56.9(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{x}}}=12 \mathrm{~Hz}, \mathrm{P}_{\mathrm{B}}\right),-21.1\left(\mathrm{dd}, \mathrm{P}_{\mathrm{X}}\right) ;+34.9\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}}\right.$ $\left.=8.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}}=216 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),+46.5\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}} \stackrel{ }{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}}\right.$ $200.6 \mathrm{~Hz}, \mathrm{P}_{\mathrm{B}}$), -8.8 (dd, P_{X}).

3.3. Compounds 4a-c and 5a-c

A solution of $\mathrm{Et}_{2} \mathrm{NLi}(0.7 \mathrm{M})$ in hexane/THF (4 mmol) was added dropwise to 2 mmol of $\mathbf{3 a}$ or \mathbf{c} in 10
ml of dry THF at $-80^{\circ} \mathrm{C}$. The reaction mixture was warmed slowly to room temperature. After evaporation of the solvents and $\mathrm{Et}_{2} \mathrm{NH}$ under vacuum, $\mathbf{4 a}$ and \mathbf{c} were obtained as a mixture of two isomers.

4a. ${ }^{31} \mathrm{P}$ NMR (THF): $\delta+98.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}}=128 \mathrm{~Hz}\right.$, $\left.\mathrm{P}_{\mathrm{A}}\right),-4.5\left(\mathrm{t}, \mathrm{P}_{\mathrm{X}}\right)$ for the trans isomer and $+58.3(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{P}_{\mathrm{a}} \mathrm{P}_{\mathrm{X}}}=211 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),+12.1\left(\mathrm{t}, \mathrm{P}_{\mathrm{X}}\right)$ for the cis isomer.
$4 \mathrm{c} .{ }^{31} \mathrm{P}$ NMR (THF): $\delta+78.2$ (dd, ${ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}}=23 \mathrm{~Hz}$, $\left.{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}}=110 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),+99.6\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{x}}}=140 \mathrm{~Hz}, \mathrm{P}_{\mathrm{B}}\right)$, -4.0 (dd, P_{x}) for the trans isomer and +44.6 (dd, $\left.{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}}=23.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}_{A} P_{X}}=66.6 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right), 81.1(\mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}}=365.4 \mathrm{~Hz}, \mathrm{P}_{\mathrm{B}}\right), 15.0\left(\mathrm{dd}, \mathrm{P}_{\mathrm{X}}\right)$ for the cis isomer.

The anion $\mathbf{4 b}$ was prepared by the same procedure with one equivalent of BuLi in hexane at $-80^{\circ} \mathrm{C} .{ }^{31} \mathrm{P}$ NMR (THF): $\delta+44.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}_{A} \mathrm{P}_{x}}=210 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),+12.6$ ($\mathrm{t}, \mathrm{P}_{\mathrm{x}}$).

Anions $\mathbf{4 a}, \mathbf{b}$ or \mathbf{c} were dissolved in 10 ml of dry THF and stirred with 50 mg of lithium at room temperature for $16 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{mg})$ was added at room temperature and, after stirring for 15 min , the 2-phosphino-1,3diphospholide anions (5) could be identified by ${ }^{31} \mathrm{P}$ NMR and used without further purification.

5a. ${ }^{31} \mathrm{P}$ NMR (THF): $\delta+224.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}_{A} \mathrm{P}_{X}}=133 \mathrm{~Hz}\right.$, P_{A}), $-13.1\left(\mathrm{t}, \mathrm{P}_{\mathrm{x}}\right)$.

5b. ${ }^{31} \mathrm{P}$ NMR (THF): $\delta+213.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}_{A} \mathrm{P}_{X}}=110 \mathrm{~Hz}\right.$, $\left.\mathrm{P}_{\mathrm{A}}\right),-56.9\left(\mathrm{t}, \mathrm{P}_{\mathrm{X}}\right)$.

5c. ${ }^{31}$ P NMR (THF): $\delta+188.4\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}_{A} \mathrm{P}_{\mathrm{B}}}=17 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}}=111 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),+205.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}}=73 \mathrm{~Hz}, \mathrm{P}_{\mathrm{B}}\right)$, $-63\left(\mathrm{dd}, \mathrm{P}_{\mathrm{X}}\right)$.

3.4. Compound 6

The 2-phosphino-1,3-diphospholide anions 5a (2 mmol), prepared as above, were treated with $\left[\mathrm{CpFe}\left(\mathrm{C}_{8} \mathrm{H}_{10}\right)\right] \mathrm{PF}_{6}[12](1 \mathrm{~g}, 2.7 \mathrm{mmol})$ at $50^{\circ} \mathrm{C}$ for 2 h . The solvent was evaporated and the residue flash chromatographed through a short silica gel column in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated and the residue chromatographed again on silica gel with toluene. M.p. $205^{\circ} \mathrm{C}$, yield 13%. Mass spectrum: $m / z 558\left(\mathrm{M}^{+}\right.$, $10 \%)$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta+20.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}}=84\right.$ $\left.\mathrm{Hz}, \mathrm{P}_{\mathrm{A}}\right),-12.4\left(\mathrm{t}, \mathrm{P}_{\mathrm{x}}\right)^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 4.38(\mathrm{~s}$, $5 \mathrm{H}, \mathrm{Cp}), 7-7.4\left(\mathrm{~m}, 20 \mathrm{H}\right.$, phenyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta 76.7(\mathrm{~s}, 5 \mathrm{C}, \mathrm{CP}), 96.1\left(\mathrm{dt},{ }^{1} J_{\mathcal{C}}=87 \mathrm{~Hz},{ }^{1} J_{\mathrm{CP}_{\mathrm{A}}}=30\right.$ $\left.\mathrm{Hz}, C P_{3}\right), 114.8\left(\mathrm{pt}, \sum^{\prime} J_{\mathrm{CP}}+{ }^{-} J_{\mathrm{CP}}=74 \mathrm{~Hz},: C-\mathrm{Ph}\right)$, 127-141 (m, phenyl).

3.5. Compound 7

A solution of $\mathrm{W}(\mathrm{CO})_{5}$ THF in THF ($110 \mathrm{ml}, 0.03 \mathrm{M}$) was prepared by photolysis of $\mathrm{W}(\mathrm{CO})_{6}$ in THF and added to the crude solution of 6 . The mixture was then stirred for 2 h at room temperature. Solvent was evaporated in vacuo and the residue chromatographed quickly through a short silica gel column in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After
removal of solvent, the residue was rechromatographed on silica gel using hexane/toluene ($70: 30$) as eluant. Yield 4%. Mass spectrum: $m / z 854$ (M-CO, 2\%), 798 ($\mathrm{M}-3 \mathrm{CO}, 5 \%$), 742 ($\mathrm{M}-5 \mathrm{CO}, 6 \%$), $558\left(\mathrm{M}-\mathrm{W}(\mathrm{CO})_{5}\right.$, $100 \%)$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta+28.6\left(\mathrm{~d},{ }^{2} J_{P_{A} P_{x}}=70\right.$ $\left.\mathrm{Hz}, \mathrm{P}_{\mathrm{A}}\right),+14.7\left(\mathrm{t},{ }^{1} J_{\mathrm{P}_{\mathrm{x}} \mathrm{w}}=250 \mathrm{~Hz}, \mathrm{P}_{\mathrm{x}}\right)$. ${ }^{\mathrm{P}} \mathrm{H} \mathrm{P}^{\mathrm{X}} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 4.27(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7-7.5(\mathrm{~m}, 20 \mathrm{H}$, phenyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 77.14(\mathrm{~s}, \mathrm{Cp}), 97.2\left(\mathrm{dt},{ }^{1} J_{\mathrm{CP}_{\mathrm{A}}}=\right.$ $\left.88 \mathrm{~Hz},{ }^{1} J_{\mathrm{CP}_{x}}=17 \mathrm{~Hz}, C \mathrm{P}_{3}\right), 115.42\left(\mathrm{pt}, \sum^{1} J_{\mathrm{CP}}+{ }^{2} J_{\mathrm{CP}}=\right.$ $75 \mathrm{~Hz}, \mathrm{PCCP}), 125-141\left(\mathrm{~m}\right.$, phenyl), $198.6\left(\mathrm{dt},{ }^{2} J_{\mathrm{CP}}=6\right.$ $\left.\mathrm{Hz},{ }^{4} J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{CO}_{\mathrm{eq}}\right), 200.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}_{x}}=22 \mathrm{~Hz}, \mathrm{CO}_{\mathrm{ax}}\right)$.

3.6. Compounds $8 a, b$ and $9 a, b$

One equivalent of BuLi in hexane (1.6 M) was added dropwise to a solution of 2 mmol of $\mathbf{1 a}$ in 10 ml of dry THF at $-50^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to room temperature and the formation of $8 \mathbf{a}, \mathbf{b}$ was checked by ${ }^{31} \mathrm{P}$ NMR (THF): $\delta+18.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=\right.$ 405 Hz), -11.4 for 8a; $+17.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=399 \mathrm{~Hz}\right)$, -11.6 for 8 b .

Distilled water $(0.1 \mathrm{ml})$ was added to the mixture of $\mathbf{8 a , b}(2 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The solvent was evaporated, and the residue chromatographed on silica gel in hexane/toluene ($70: 30$). 9a,b ($80: 20$) were obtained in 64% yield. Mass spectrum: $m / z 466\left(\mathrm{M}^{+}, 17 \%\right), 409$ ($\mathrm{M}-\mathrm{Bu}$), 287 ($\mathrm{M}-\mathrm{PhCCPh}$), 178 ($\mathrm{PhCCPh}, 100$). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-9.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{Pp}}=122 \mathrm{~Hz}\right),-30.7(\mathrm{~d})$, major isomer; $-10.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=118 \mathrm{~Hz}\right),-31.0(\mathrm{~d})$, minor isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.83\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-1.4\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.7-1.9$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.03-2.1\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{P} \dot{\mathrm{C}} \mathrm{H}_{2} \mathrm{P}\right), 6.7-7.5$ $\left(\mathrm{m}, 21 \mathrm{H},: \mathrm{CH}\right.$ and phenyl), major isomer. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 24.25\left(\mathrm{~d}, J_{\mathrm{CP}}=12 \mathrm{~Hz}\right.$, $\left.C \mathrm{H}_{2}\right), 27.92\left(\mathrm{~d}, J_{\mathrm{CP}}=13 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 28.6\left(\mathrm{dd}, J_{\mathrm{CP}}=\right.$ $\left.10.6 \mathrm{~Hz}, J_{\mathrm{CP}}=7.1 \mathrm{~Hz}, C \mathrm{P}\right), 24.0\left(\mathrm{t},{ }^{1} J_{\mathrm{CP}}=22 \mathrm{~Hz}\right.$, $\left.C \mathrm{P}_{2}\right), 126-133\left(\mathrm{~m}\right.$, phenyl), $139.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=42 \mathrm{~Hz}\right.$, $\mathrm{PC}: C \mathrm{H}), 136.34\left(\mathrm{~d}, J_{\mathrm{CP}}=14 \mathrm{~Hz},: C\right), 137.17(\mathrm{dd}$, $\left.J_{\mathrm{CP}}=7.5 \mathrm{~Hz}, J_{\mathrm{CP}}=15.6 \mathrm{~Hz},: C\right), 138.55\left(\mathrm{~d}, J_{\mathrm{CP}}=6\right.$ $\mathrm{Hz},: C), 142.2\left(\mathrm{dd}, J_{\mathrm{CP}}=5.4, J_{\mathrm{CP}}=21 \mathrm{~Hz},: C\right)$, major isomer.

3.7. Compounds 10a.b

Pure methyl iodide $(125 \mu \mathrm{l})$ was added to a mixture of $\mathbf{8 a}, \mathbf{b}$ (2 mmol) at $-40^{\circ} \mathrm{C}$. The mixture was hydrolysed, then dried on MgSO_{4} and chromatographed on a short silica gel column with ethylacetate, yield 60%, as a 1:1 mixture of two diastereomers.

10a,b. Mass spectrum: $m / z 481\left(\mathrm{M}^{+}, 5 \%\right), 480$ (M-H, 12\%), 301 (M-PhCH:CHPh, 80%). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 29.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=65 \mathrm{~Hz}, \mathrm{P}^{+}\right),-14.8(\mathrm{P})$ first isomer, $29.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=65 \mathrm{~Hz}, \mathrm{P}^{+}\right),-15.7(\mathrm{P})$ second isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.78-0.92(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25-1.45\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.27(\mathrm{~d}, 3 \mathrm{H}$, $\left.{ }^{2} J_{\mathrm{HP}}=13.4 \mathrm{~Hz}, \mathrm{C} H_{3} \mathrm{P}\right), 2.36\left(\mathrm{~d}, 3 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=13.2 \mathrm{~Hz}\right.$,
$\mathrm{CH}_{3} \mathrm{P}$), 2.6-2.8 (m, 4H, $\mathrm{CH}_{2} \mathrm{P}$), 2.88 (part B of ABX , $1 \mathrm{H},{ }^{2} J_{\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}}=15.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}}=15.2 \mathrm{~Hz}, \mathrm{P}^{+} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$ of first isomer), 3.07 (part B of ABX, $1 \mathrm{H},{ }^{2} J_{\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}}=15.2$ $\mathrm{Hz},{ }^{2} J_{\mathrm{H}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}}=15.3 \mathrm{~Hz}, \mathrm{P}^{+} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$ of second isomer), 3.67 (part ${ }^{\mathrm{H}_{\mathrm{B}} \mathrm{P}_{\mathrm{X}}}$ of $\mathrm{ABX}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}}=13 \mathrm{~Hz}, \mathrm{P}^{+} \mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ of first isomer), 3.82 (part A of ${ }^{A} \mathrm{ABX}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}}=12.8$ $\mathrm{Hz}, \mathrm{P}^{+} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ of second isomer), $6.7\left(\mathrm{~d}, 1 \mathrm{H},{ }^{\mathrm{x}} J_{\mathrm{HP}}=\right.$ $11.8 \mathrm{~Hz},: \mathrm{C} H), 6.85\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HP}}=8.8 \mathrm{~Hz},: \mathrm{CH}\right)$, $6.9-7.7\left(\mathrm{~m}, 40 \mathrm{H}\right.$, phenyl). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.9(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=55 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{P}^{+}\right), 13.38\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.27(\mathrm{pt}$, $\left.C \mathrm{P}_{2}\right), 22.98\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=54 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{X}}\right), 23.52\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}\right.$ $\left.=3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}_{\mathrm{x}}\right), 118.4\left(\mathrm{~d},{ }^{\mathrm{T}} J_{\mathrm{CP}}=85 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right.$ $\mathrm{PhP}_{\mathrm{x}}$), 127.6-138.7 (m, phenyl).

3.8. Compounds 11a,b

Pure methyl iodide $(125 \mu \mathrm{l})$ was added to a mixture of $8 \mathbf{a}, \mathbf{b}(2 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. Pure benzaldehyde (125 $\mu \mathrm{l})$ was added at $-80^{\circ} \mathrm{C}$, the mixture was stirred for 30 min at $-80^{\circ} \mathrm{C}$ and then slowly warmed to room temperature. The solvent was evaporated and the residue chromatographed on silica gel with hexane/toluene ($80: 20$).

11a,b were obtained in a $1: 1$ mixture as a colorless oil with 77% yield. Mass spectrum: $m / z 390\left(\mathrm{M}^{+}\right.$, $50 \%) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.0$ and $-11.8 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.47\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=12.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=2.8\right.$ $\mathrm{Hz},: \mathrm{C} H \mathrm{P}$ of Z isomer $), 6.94\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=17.2 \mathrm{~Hz}\right.$,
${ }^{2} J_{\mathrm{HP}}=3.4 \mathrm{~Hz},: \mathrm{CHP}$ of E isomer $), 7.1-7.8(\mathrm{~m}, 22 \mathrm{H}$, : CH Ph and phenyl).

References

[1] Some recent references: H. Schumann, J.A. Mease-Marktscheffel, B. Gorella and F.H. Görlitz, J. Organomet. Chem., 428 (1992) C27; W.-K. Wong and F.-W. Lee, Polyhedron, 11 (1992) 863; H. Schumann, T. Ghodsi, L. Esser and E. Hahn, Chem. Ber., 126 (1993) 591; B. Brumas, D. de Caro, F. Dahan, D. de Montauzon and R. Poilblanc, Organometallics, 12 (1993) 1503.
[2] E.J. Padma Malar, J. Org. Chem., 57 (1992) 3694.
[3] F. Mathey, Coord. Chem. Rev., 137 (1994) 1.
[4] B. Deschamps and F. Mathey, Organometallics, 11 (1992) 1411.
[5] N. Maigrot, M.L. Sierra, C. Charrier, L. Ricard and F. Mathey, Polyhedron, 11 (1992) 601.
[6] J.P. Albrand, D. Gagnaire, J. Martin and J.B. Robert, Bull. Soc. Chim. Fr., (1969) 40.
[7] H.H. Karsch, L. Weber, D. Wewers, R. Boese and G. Müller, Z. Naturforsch., $39 b$ (1984) 1518.
[8] H.H. Karsch, Z. Naturforsch., $37 b$ (1982) 284.
[9] H.H. Karsch, Z. Naturforsch., $38 b$ (1983) 1027.
[10] H.H. Karsch, R. Richter and A. Schier, Z. Naturforsch., $48 b$ (1993) 1533 and references cited therein.
[11] R. Appel, M. Wander and F. Knoll, Chem. Ber., 112 (1974) 1093.
[12] D. Astruc, Tetrahedron, 39 (1983) 4027; R.M.G. Roberts and A.S. Wells, lnorg. Chim. Acta, 112 (1986) 171.

[^0]: * Corresponding author.

